教师主页

人才培养

当前位置: 首页 >  教师主页 >  唐志尧 >  人才培养

唐志尧

职称:教授、博雅特聘教授

研究方向:植物群落生态学,生态遥感,生态化学计量学

通讯地址:

Tel: 010-62754039
Email:zytang@pku.edu.cn

个人简介 人才培养 科学研究 教研成果

工作经历

2021.08- 博雅特聘教授,8040威尼斯 Boya Distinguished Professor, Peking University

2007.08-2021.08 副教授(2019年起任生态学系主任),8040威尼斯 Associate Professor, Peking University

2009.10-2010.10 访问学者,英国谢菲尔德大学动植物科学系 Visiting Researcher, University of Sheffield

2004.04-2007.08 讲师,8040威尼斯环境学院 Lecturer, Peking University

教育经历

2003.12  理学博士,8040威尼斯城市与环境学系(环境学院). PhD, Peking University

1998.09-2000.09  硕士研究生,8040威尼斯城市与环境学系 Master Student, Peking University

2001.10-2003.10  奔驰访问学生,德国汉诺威大学生物学系 Daimler-Benz Fellow, Leibniz University of Hanover

1998.07  理学学士,8040威尼斯城市与环境学系 BSc, Peking University

学术与社会任职

2024-: 植物生态学报 副主编

2024-: 中国生态学学会教育工作委员会副主任

2023-: 中国植物学会植物生态专业委员会副主任

2023-: 北京生态学学会副理事长

2021-: 北京生物多样性科学研究会理事

2018-: 中国地理学会生物地理专业委员会委员(2018-2022)、秘书长(2022-)

2018-:《中国植被志》编委会 副主编

2016-:《中国大百科全书 生态学卷》编委,《群落生态学》分支副主编

2020-: Plant Diversity, Associate Editor-in-Chief

2019-: Journal of Vegetation Sciences, Editorial Board Member

2016-2020: Phytocoenologia, Editorial Board Member

2014-: Journal of Plant Ecology, Editorial Board Member

2014-: 植物生态学报 编委

2013-: 生物多样性 编委

荣誉与奖励

2024: 8040威尼斯优秀研究生指导团队成员

2024: 8040威尼斯优秀博士学位论文指导教师

2023: 8040威尼斯本科毕业论文优秀指导教师

2022: 8040威尼斯教学卓越奖

2020: 国家杰出青年基金

2020: 8040威尼斯优秀班主任

2019: 北京市自然科学一等奖(第4完成人)

2019: 环保部科技进步二等奖 (第6完成人)

2018: 8040威尼斯曾宪梓优秀教学奖

2013: 教育部自然科学一等奖 (第3完成人)

2010: 中国出版政府奖-图书奖 (第3作者)

一、在站博士后与在读研究生  Postdoctors and graduate students

博士后 (Postdoc.):张艺伟、左振君、崔增、上官子健、张宏图

博士生 (PhD students):唐荣、张勇强、宋珊珊、尼格娜热. 阿曼太、翁许湘、戴梦得、白云昊、陈金龙、杜文瑞、董昆鹏、张秦泽

硕士生 (Mater students)林熠伟、施辰玥、文絮

二、出站博士后与毕业学生  Former postdoctors and students

出站博士后 (Postdoc.):

黄力 (Li HUANG), 2024. 中国古树大尺度格局及留存机制. (入选8040威尼斯优秀博士后) 

郭焱培 (Yanpei GUO), 2023. 热带森林树木生长的限制因素. (入选北京市青年人才托举工程)

孟媛媛 (Yuanyuan MENG), 2023. 黄土高原人工林时空动态及其生态效应遥感分析.

陈霞 (Xia CHEN), 2023. 基于数据整合的森林生物量积累及树木水分运输性状调控研究. 

毕业博士生 (PhD students):

张宏图 (Hong-Tu ZHANG), 2024.邻体相互作用对中国东部森林树木生长的影响. (CSC-fellow to  Uni-Jyvaskyla,8040威尼斯优秀博士论文).

张艺伟 (Yi-Wei ZHANG), 2023.基于高光谱遥感的青藏高原典型草地群落功能属性研究. (CSC-fellow to Uni-Twente).

刘同彦 (Tongyan LIU) (硕转博), 2022. 中国亚热带森林树种多样性对树木微观生长和水分利用的影响.

艾尤尔.亥热提 (Gheyur GHEYRET), 2020. 中国亚热带森林常见树木径向生长及其影响因素.入选新疆自治区青年人才托举工程)

郭焱培 (Yanpei GUO), 2019. 中国北方灌丛分布、结构与功能. (CSC-fellow to Uni-Zurich).入选北京市青年人才托举工程)

强 (Qiang GUO) (硕转博), 2019.中国东部典型森林、 树木生长及其稳定性格局. (CSC-fellow to Uni-Zurich). 

张则瑾 (Zejin ZHANG), 2016. 中国陆地自然保护区的保护现状及效应.

池秀莲 (Xiulian CHI) (硕转博), 2015. 中国东部森林树木生长的区域分异及影响因素. 

张建华 (Jianhua ZHANG, U-CAS), 2014. 氮添加对北京东灵山灌丛碳循环的影响. 

毕业硕士生 (Master students):

张思怡 (Siyi ZHANG), 2021. 基于物种组成差异与栖息地完整性的中国生物多样性保护优先区分析

张雪皎 (Xuejiao ZHANG), 2019. 中国亚热带4种树木树干液流动态及其与树木生长的关系

张新悦 (Xinyue ZHANG), 2019.塞罕坝地区近30年来的土地覆被变化.

蒋旻炜 (Minwei JIANG), 2018. 中国灌丛土壤碳氮磷含量与密度的分布格局及其影响因素.

闫昱晶 (Yujing YAN), 2016. 气候变化对青藏高原特有种子植物分布的影响.

刘长柱 (Changzhu LIU, U-CAS), 2014. 秦岭太白山森林植物群落的功能与谱系多样性.

杨弦 (Xian YANG), 2014. 中国北方温带灌丛碳、氮、磷含量与储量.

赵广华 (Guanghua ZHAO), 2013. 中国自然保护区分布特征及其生态效应.

毕业本科生 (Undergraduates):

杜文瑞 (Wen-Rui DU, 2023)、赵溧 (Li ZHAO, 2022)、刘威 (Wei LIU, 2021)、白云昊 (Yunhao BAI, 2020)、

汪毅 (Yi WANG, 2019)、张宏图 (Hongtu ZHANG, 2019)、李婧 (Jing LI, 2019)、陈候清 (Houqing CHEN, 2018)、

张思怡 (Siyi ZHANG, 2018)、郭强 (Qiang GUO, 2014)、宋倩倩 (Qianqian SONG, 2013)、闫昱晶 (Yujing YAN, 2013)、

陶泽兴 (Zexing TAO, 2012)、李卓楠 (Zhuonan LI, 2010)、余乐 (Le YU, 2010)、钱致儒 (Zhiru QIAN, 2008)、

饶雪莹 (Xueying RAO, 2008)、汪洁 (Jie WANG, 2008)、彭李菁 (Lijing PENG, 2007)、李晶 (Jing LI, 2006)、

郭兆迪 (Zhaodi GUO, 2005)

访问学者 (Visiting scholar):

张璐(Lu ZHANG, 2024)


欢迎生态学、自然地理学及相关学科学生联系报考;欢迎本科生加入课题组开展学术活动;长期招收群落生态学、植被生态学以及生态遥感方向博士后。主要研究方向见科研课题部分。Prospective students and postdoctors interested in different aspects of ecology and/or biogeography are welcome. Please contact: zytang(at)pku.edu.cn


一、主要研究方向

1). 植物群落构建、多样性与功能:阐明物种多样性的分布格局及其成因,是理解群落构建机制的前提,也是生物多样性保护的科学基础,课题组通过大量野外调查,建立了物种信息和环境信息齐全的 “中国植被样方数据库”,从物种、谱系和功能等多维度研究中国植物多样性的多尺度分布格局与成因,揭示其群落构建的区域分异。

2). 森林动态及树木生长的控制机制 :生长是森林的主要功能体现,也是森林碳汇形成的最主要过程。森林树木生长主要受到物种属性、立地条件、邻体关系以及树木大小等因素的调控,研究不同个体的 生长速率及其控制因素同时也体现了森林群落内物种共存的机制。为实时精确监测我国森林植物生长,研究我国森林碳汇形成以及树木生长的机制,从2011年开始建立“中国东部森林生长监测平台”,研究森林群落物种共存以及多 样性与生态系统功能的关系。

3). 生态化学计量格局及其与生产力的联系:氮磷计量能够反映生物重要的功能属性特征,群落水平的氮磷元素计量特征直接决定着群落生产力等生态功能。课题组试图通过野外调查,建立从器官、个体、物种到群落层次的元素计量推演关系,阐明群落氮磷化学计量与群落生产力的关系。

4)自然保护区的有效性评价 :自然保护区的有效性是减缓生物多样性丧失的主要途径,其保护成效是生物多样性保护的关 键。课题组通过数字化构建了我国现有自然保护区空间数据库,试图利用精确的物种分布数据,确定中国生物多样性分布热点地区及保护空白,并评价现有国 家级自然保护区在体现物种多样性与生态系统多样性的现状。

二、主要在研课题

2022-2027. 科技部全球变化重大科学研究计划项目. 北方半湿润半干旱区典型森林生态系统对全球变化的响应与适应. 课题负责人

2021-2025. 国家自然科学基金委杰出青年基金. 植物群落生态学. 主持

2021-2025. 中国科学院战略先导专项子课题. 南方山地草地资源清查与评价. 主持

2019-2024. 科技部科技基础资源调查专项,中国植被志(针叶林卷)编研. 参加

一、代表性论文  Selected publications

植物群落构建  Community assembly         

Gheyret G, Guo YP, Fang JY, Tang ZY*. 2020. Latitudinal and elevational patterns of phylogenetic structure in forest communities in China’s mountains. Science China Life Science 63: 1895-1904.

Zhang HT, ..., Tang ZY*. 2022. Environment shapes tree community traits in China's forests. Journal of Vegetation Sciences 33: e13146.

Qiao XJ, Jabot F, Tang ZY*, et al. 2015. A latitudinal gradient in tree community assembly processes evidenced in forests of China. Global Ecology & Biogeography 24: 314-323.

Zhang HT, …, Tang ZY*. 2024. Spatiotemporal variation in the negative effect of neighbourhood crowding on stem growth. Journal of Ecology doi: 10.1111/1365-2745.14291.

生物多样性与生态系统功能 Biodiversity and ecosystem functioning      

Bai YH, Tang ZY*. 2024. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. PNAS 121: e2410467121doi: 10.1073/pnas.2410467121.

Zhang HT, …, Tang ZY*. 2024. Neighborhood functional dissimilarity promotes stem radial growth by mitigating tree water deficit. National Science Review doi: 10.1093/nsr/nwad320.

Guo YP, ......, Tang ZY*, 2019. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology 100: e02624.

Zhang YQ,..., Tang ZY*. 2024. Functional diversity of neighbors mediates sap flow density and radial growth of focal trees, but in different ways between evergreen and deciduous broadleaved species. Functional Ecology 38: 1931-1943. 

生物多样性保护 Biological conservation     

Huang L, ... Yang YC*, Tang ZY*, Lindenmayer DB*. 2023. Human activities and species biological traits drive the long-term persistence of old trees in human-dominated landscapes. Nature Plants 9: 898–907.

Bai YH, …, Tang ZY. 2020. Conservation status of Primulaceae, a plant family with high endemism, in China. Biological Conservation 248: 108675.

Zhang SY, …, Tang ZY. 2020. Representativeness of threatened terrestrial vertebrates in nature reserves in China. Biological Conservation 246: 108599.

Yan YJ, …, Tang ZY*, Yao YJ*. 2017. Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation 206: 143-150.

Zhang ZJ, …, Tang ZY*. 2015. Distribution and conservation of threatened plants in China. Biological Conservation 192: 454-460. 

Tang ZY, et al. 2006. Biodiversity in China's mountains. Frontiers in Ecology and the Environment 4: 347-352. 

生态化学计量 Ecological stoichiometry      

Tang ZY#, Xu WT#, Zhou GY#, et al. 2018. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. PNAS 115: 4033-4038.

Guo YP, ......, Tang ZY*, 2020. The community-level scaling relationship between leaf nitrogen and phosphorus exhibits vegetation’s strategies for nutrient utilization. Journal of Ecology 108: 1276–1286. doi: 10.1111/1365-2745.13369.

Yang X, …, Tang ZY*. 2016. Variations of leaf N, P concentrations in shrubland biomes across Northern China: phylogeny, climate and soil. Biogeosciences 13: 4429.

Zhang YW, Guo YP, Tang ZY* et al. 2021. Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China. Earth System Science Data 13: 5337-5351. (data available at: https://doi.org/10.5061/dryad.6hdr7sqzx, 2021.)


二、全部论文列表 Full list of publications

2024

235. Bai YH, Tang ZY*. 2024. Enhanced effects of species richness on resistance and resilience of global tree growth to prolonged drought. PNAS 121: e2410467121doi: 10.1073/pnas.2410467121.

234. Bai YH, Gheyret G*, …, Tang ZY*  2024. Trait-based neighbourhood effects modulate the growth–weather relationships of subtropical trees. The Innovation Life (accepted).

233. Zhang HT, Gheyret G*, ..., Tang ZY*. 2024. Neighborhood functional dissimilarity promotes stem radial growth by mitigating tree water deficit. National Science Review 11: nwad320. doi: 10.1093/nsr/nwad320.

232. Zhang HT, …, Tang ZY*. 2024. Spatiotemporal variation in the negative effect of neighbourhood crowding on stem growth. Journal of Ecology 112:1140–1149. doi: 10.1111/1365-2745.14291.

231. Zhang YQ,..., Tang ZY*. 2024. Functional diversity of neighbors mediates sap flow density and radial growth of focal trees, but in different ways between evergreen and deciduous broadleaved species. Functional Ecology 38: 1931-1943. doi: 10.1111/1365-2435.14610.

230. Zhang YW, ... Wang T*, Tang ZY*. Satellite hyperspectral imagery reveals scale dependence of functional diversity patterns in a Qinghai-Tibetan alpine meadow. International Journal of Applied Earth Observation and Geoinformation 129: 103868.

229. Fang WJ, …, Tang ZY*, Fang JY*. 2024. Life forms affect beta-diversity patterns of larch forests in China. Plant Diversity 46: 49-58. doi: 10.1016/j.pld.2023.10.003.

228. He CQ …, Tang ZY*, Fang JY*. 2024. Sampling origins and directions affect the minimum sampling area in forest plots. Journal of Vegetation Science 35: e13232. doi: 10.1111/jvs.13232.

227. Song, SS, …Tang, ZY. Precipitation variability has a weak but significant stabilizing effect on community structure. Ecosystem Health and Sustainability 10: 1-9. doi: 10.34133/ehs.0184.

226. Tang R, Guo YP, Tang ZY. 2024. Intraspecific variation in leaf morphology of three widespread woody species along climatic gradients. Journal of Plant Ecology (accepted).

225. Ao Z. et al. 2024. A national-scale assessment of land subsidence in China's major cities. Science 384: 301-306.

224. Fang WJ et al., 2024. Plant community structure and environmental factors regulate the N-P stoichiometry of soil and leaf for larch forests in Northern China. Journal of Forestry Research (accepted).

223. Hahn G et al. 2024. Global decoupling of functional and phylogenetic diversity in plant communities. Nature Ecology and Evolution (accepted)

222. Hu T. et al. 2024. High-resolution mapping of grassland canopy cover in China through the integration of extensive drone imagery and satellite data. ISPRS Journal of Photogrammetry and Remote Sensing 218: 69-83.

221. Luo A. et al.. 2024. Global multifaceted biodiversity patterns, centers, and conservation needs in angiosperms. Science China Life Science  doi: 10.1007/s11427-023-2430-2.

220. Ma S. et al., 2024. Mycorrhizal dominance influences tree species richness and richness-biomass relationship in China’s forests. Ecology (accepted)

219. Ouyang M. et al., 2024. The scaling of elemental stoichiometry and growth rate over the course of bamboo ontogeny. New Phytologist 241: 1088-1099. doi: 10.1111/nph.19408.

218. Ouyang M. et al., 2024. Constant isometric scaling of soil carbon to nitrogen in Moso bamboo-invaded evergreen broadleaf forests in subtropical China. Plant and Soil  doi: 10.1007/s11104-024-06986-z.

217. Shen P. et al., 2024. Biodiversity buffers the response of spring leaf unfolding to climate warming. Nature Climate Change doi: 10.1038/s41558-024-02035-w

216. Xie Y et al., 2024. Knowledge-based deep learning to predict vegetation carbon, nitrogen and phosphorus densities in China' s shrublands. Geophysical Research Letters.  (accepted)

215. Yu Q. et al. Differential responses of soil phosphorus fractions to nitrogen and phosphorus fertilization: A global meta-analysis. Global Biogeochemical Cycles doi: 10.1029/2023GB008064.

214. 尼格娜热.阿曼太 等 2024. 人工林种植和生长对黄土高原生态系统固碳和水文调节功能的影响:基于遥感时序分析的证据. 生态学报

213. 宋珊珊 等 2024. 短期围封对河北塞罕坝草甸草原植物功能多样性的影响. 应用生态学报

2023

212. Huang L, ... Yang YC*, Tang ZY*, Lindenmayer DB*. 2023. Human activities and species biological traits drive the long-term persistence of old trees in human-dominated landscapes. Nature Plants 9: 898–907.

211. Meng YY... Tang ZY*. 2023. Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis. GIScience & Remote Sensing 60: 2185980. 

210. Amantai N. et al., 2023. Spatial–temporal patterns of interannual variability in planted forests: NPP time-series analysis on the Loess Plateau. Remote Sensing 15: 3380.

209. Amantai N. et al., 2023. Climate overtakes vegetation greening in regulating spatiotemporal patterns of soil moisture in arid Central Asia in recent 35 years. GIScience & Remote Sensing doi: 10.1080/15481603.2023.2286744. 

208. 张艺伟... 唐志尧*. 2023. 高光谱遥感在植物多样性研究中的应用:进展与趋势. 遥感学报  27: 2467-2483. doi: 10.11834/jrs.20211120.

207. Cai Q. et al. 2023. Elevational Patterns of Tree Species Richness and Forest Biomass on Two Subtropical Mountains in China. Forests 14: 1337.

206. Chen X, et al. 2023. Comparison between the stem and leaf photosynthetic productivity in Eucalyptus urophylla plantations with different age. Planta 257:56.

205. Kang J, et al., 2023. Contrasting growth responses to drought in three tree species widely distributed in northern China. Science of the Total Environment. 

204. Schuldt A, et al. 2023. Carbon–biodiversity relationships in a highly diverse subtropical forest. Global Change Biology doi: 10.1111/gcb.16697.

203. Tan C et al. 2023. Distribution and conservation of the Lauraceae in China, Global Ecology and  Conservation doi: 

202. Tao SL et al. 2023. A global long-term, high-resolution satellite radar backscatter data record (1992–2022C): merging C-band ERS/ASCAT and Ku-band QSCAT. Earth Syst. Sci. Data 15: 1577–1596.

201. Tao SL et al. 2023. Little evidence that Amazonian rainforests are approaching a tipping point. Nature Climate Change 13, pages1317–1320.

2022

200. Fang WJ, et al. 2022. Species richness patterns and determinants of larch forests in China.  Plant Diversity 5: 436-444.

199. Ge JL, ..., Tang ZY*, Xie ZQ*. 2022. Depth-dependent controls over soil organic carbon stock across Chinese shrublands. Ecosystems doi: 10.1007/s10021-022-00757-6.

198. Liu TY, Ji CJ, Tang ZY. 2022. A semi-thin section technique based cell-level anatomical approach to quantify the xylem secondary cell wall deposition and lignification process. IAWA Journal

197. Meng YY, ..., Tang ZY*. 2022.  A planted forest mapping method based on long-term change trend features derived from dense Landsat time series in an ecological restoration region. Remote Sensing 14: 961.

196. Wang QG, ... Tang ZY*. 2022. Ecolutionary history and climate conditions constrain the flower colours of woody plants in China. Journal of Plant Ecology 15: 196-207.

195. Weng XX, Guo YP, Tang ZY. 2022.  Spatial-temporal dependence f the neighborhood interaction in regulating tree growth in a tropical rainforest. Forest Ecology and Management 508: 120032.

194. Zhang HT, ..., Tang ZY*. 2022. Environment shapes tree community traits in China's forests. Journal of Vegetation Sciences 33: e13146.  doi:10.1111/jvs.13146.

193. Zhang YW, ..., Tang ZY*. 2022. Estimating community-level plant traits in a species rich alpine meadow using UAV image spectroscopy. Remote Sensing 14: 3399.

192. Cai GH et al. Plant-Derived lipids play a crucial role in forest soil carbon accumulation. Soil Biology and Biochemistry 168: 108645.

191. Chen GP et al. 2022. Climate and forest attributes influence above-ground biomass of deciduous broadleaf forests in China. Journal of Ecology 111: 495-508.

190. Feng YH, et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376: 865-868.

189. Feng YH, et al.  Decadal lake volume changes (2003-2020) and driving forces at a global scale. Remote Sensing 14: 1032.

188. Huang HY. et al. Effects of afforestation on soil microbial diversity and enzyme activity: a meta-analysis Geoderma 423: 115961.

187. Guo QH, et al. Human-climate coupled changes in vegetation community complexity of China since 1980s. Earth's Future doi: 10.1029/2021EF002553.

186. Liu YZ, et al. Classification and distribution of evergreen broad-leaved forests in Jiangxi, East China. Journal of Plant Ecology doi: 10.1093/jpe/rtac059.

185. Liu XQ, et al. Neutral network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment 269: 112844.

184. Ouyang M, et al. Moso bamboo (Phyllostachys edulis) invasion increases forest soil pH in subtropical China. Catena 215: 106339.

183. Satatini FM, et al., 2022. Global patterns of local plant species richness. Nature Communications 13: 4683.

182. Tian QX, et al. Vertical distribution of soil bacterial communities in different types along an elevation gradient. Microbial Ecology doi: 10.1007/s00248-021-01949-8.

181. Wang CC, et al. 2022. Wuling Mountains function as a corridor for woody plant species exchange between northern and southern Central China. Frontiers in Ecology and Evolution doi: 10.3389/fevo.2022.837738.

180. Xiong XY et al. 2022. Aboveground biomass and its biotic and abiotic modulators of a main food bamboo of the giant panda in an subalpine spruce-fir forest in southwestern China. Journal of Plant Ecology 15: 1-12. doi: 10.1093/jpe/rtab069.

179. Yang YH, et al. 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Science doi: 10.1007/s11427-021-2045-5. (=杨元合等 2022. 陆地生态系统碳源汇特征及其对实现碳中和目标的贡献. 中国科学-生命科学)

178. Yu QS, et al. 2022. Foliar phosphorus allocation and photosynthesis reveal plants’ adaptative strategies to phosphorus limitation in tropical forests at different successional stages. Science of the Total Environment 846: 157456. doi: 10.1016/j.scitotenv.2022.157456

177. Zhang JH, et al. Nutrient resorption responses of plant life forms to nitrogen addion in temperate shrublands. Ecosphere 10.1002/ecs2.4113.

176. 王国宏等 2022.《中国植被志》研编规范的若干说明、补充与修订.  植物生态学报  46: 368-372.

2021

175. Feng YH, ..., Tang ZY*. 2021.  Assessing the effectiveness of global protected areas based on the difference in differences model. Ecological Indicators 130: 108078.

174. Guo YP, ..., Tang ZY*. 2021. Environmental constraints on the inter-genus variation in the scaling relationship between leaf nitrogen and phosphorus concentrations. Journal of Plant Ecology 14: 616-627.

173. Gheyret G, ..., Tang ZY*. 2021. Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic and Applied Ecology 55: 74-86.

172. Li Y, Yan YJ, Tang ZY*,…, Yao YJ*. 2021. Conserving the Chinese caterpillar fungus under climate change. Biodiversity and Conservation 30: 547-550.

171. Zhang JH, ...,  Tang ZY*. 2021. Responses of litter decomposition and nutrient dynamics to nitrogen addition to temperate shrublands of North China. Frontiers in Plant Sciences 11: 618675.

170. Zhang YW, Guo YP, Tang ZY* et al. 2021. Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China. Earth System Science Data 13: 5337-5351.

169. Cai HY, et al. 2021. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Diversity and Distribution 27: 179-194.

168. Cai Q, et al. 2021. The relationship between niche breadth and range size of beech (Fagus) species worldwide. Journal of Biogeography 48: 1240-1253.

167. Feng YH, et al. 2021. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Communications Earth & Environment. 2: 88.

166. Ouyang M. et al. 2021. A field-based estimation of moso bamboo forest biomass in China. Forest Ecology and Management 505: 119885.

165.  Schnabel F.,et al. 2021. Hydraulic diversity stabilizes productivity in a large scale subtropical tree diversity experiment. Science Advances 7: eabk1643.

164. Sun YF, et al. 2021. Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Science China Life Sciences 64: 739-751.

163. Tian QX, et al. 2021. Soil pH and organic carbon properties drive soil bacterial communities in surface and deep layers along an elevational gradient. Frontiers in Microbiology 12: 646142.

162. Trogisch T, et al., 2021. The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology 55: 33-52.

161. Wang YP, et al., 2021. Allien woody plant invasions in natural forests across China. Journal of Plant Ecology 14: 749-756.

160. Yi SJ, et al. 2021. Biodiversity, environmental context and structural attributes as drivers of aboveground biomass in shrublands at the middle and lower reaches of the Yellow River Basin. Science of Total Environment 774: 145198.

159. 郭焱培,  ..., 唐志尧*. 2021. 中国北方典型灌丛的分布特征及气候限制. 中国科学: 生命科学51: 346.

158. 刘鸿雁,唐志尧(主编)华北地区植物资源保护与利用. 北京: 科学出版社. 2021.

2020

157. Bai YH, …, Tang ZY⁎. 2020. Conservation status of Primulaceae, a plant family with high endemism, in China. Biological Conservation 248: 108675.

156. Fang WJ, ..., Tang ZY*, Fang JY*. 2020. The relationships among structure variables of larch forests in China. Forest Ecosystems 7: 61.

155. Ge JL, Xu WT, Liu Q, Tang ZY*, Xie ZQ*, 2020. Patterns and environmental controls of soil organic carbon density in Chinese shrublands. Geoderma 363: 114161.

154.  Gheyret G, Guo YP, Fang JY, Tang ZY*. 2020. Latitudinal and elevational patterns of phylogenetic structure in forest communities in China’s mountains. Science China: Life Science 63: 1895-1904.

153.  Gheyret G, Mohammat A, Tang ZY*. 2019. Elevational patterns of temperature and humidity in the middle Tianshan Mountain area in Central Asia. Journal of Moutain Science 12: 397-409.

152. Guo YP, …, Tang ZY*, 2020. The community-level scaling relationship between leaf nitrogen and phosphorus exhibits vegetation’s strategies for nutrient utilization. Journal of Ecology 108: 1276-1286.

151. Guo YP, …, Tang ZY*. 2020. Climate and biomass together control the vertical distribution of soil carbon, nitrogen and phosphorus in shrublands in China. Plant and Soil 456: 15-26.

150. Liu Z, Wang F*, Tang ZY*, Tang JT. 2020. Predictions and driving factors of production-based CO⁠2 emissions in Beijing, China. Sustainable Cities and Society 53: 101909.

149. Zhang SY, …, Tang ZY⁎. 2020. Representativeness of threatened terrestrial vertebrates in nature reserves in China. Biological Conservation 246: 108599.

148. He NP, et al. 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution 35: 908-918.

147. Li YQ, et al. 2020. Leaf size of woody dicots predicts ecosystem primary productivity, Ecology Letters 23: 1003-1013.

146. Song SS, et al. 2020. Long-term grazing exclusion reduces species diversity but increases community heterogeneity in an alpine grassland. Frontiers in Ecology and Evolution 8: 66.

145. Su YJ, et al., 2020. An updated Vegetation Map of China (1:1000000). Science Bulletin 65: 1125-1136.

144. Zhu JX, et al., 2020. Increasing soil carbon stocks in eight permanent forest plots in China. Biogeosciences 17: 715-726.

143. 张新悦, ..., 唐志尧*. 2020. 1982-2014年华北及周边地区生长季NDVI变化及其驱动因子. 8040威尼斯学报 57: 153-161.

142. 李熠等. 2020. 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例. 生物多样性 28: 99–106.

141. 张恒等. 2020. 近 30 年京津冀地区湖泊面积的变化. 8040威尼斯学报(自然科学版) doi: 10.13209/j.0479-8023.2019.123.

140. 方精云等. 2020. 《中国植被志》的植被分类系统、植被类型划分及编排体系. 植物生态学报 44: 96-110.

139. 王国宏等. 2020.《中国植被志》研编内容与规范. 植物生态学报 2020, 44 (2): 128–176.

138. 郭柯等. 2020. 中国植被分类系统修订方案. 植物生态学报 44: 111-127.

137. 谢宗强,唐志尧,刘庆,徐文婷. 中国灌丛生态系统碳汇. 北京: 科学出版社. 2019.

2019

136. Guo YP, …, Tang ZY*, 2019. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology 100: e02624.

135.  Yan YJ, Tang ZY*. 2019. Protecting endemic plants on the Tibetan Plateau under future climate change: migration matters. Journal of Plant Ecology 12: 962-971.

134. Zhang Q, ..., Tang ZY*, Xie ZQ*, 2019. C: N: P stoichiometry of Ericaceae species in shrubland biomes across Southern China: influences of climate, soil and species identity. Journal of Plant Ecology 12: 346-357.

133. Bruelheide H, et al. 2019. sPlot – a new tool for global vegetation analyses. Journal of Vegetation Sciences 30: 161-186.

132. Feng YH, et al. 2019. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environment Research Letters 14:124009.

131. He HL, et al. 2019. Altered trend in carbon uptake China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus.National Science Review 6: 505-514.

130. Tian D, et al. 2019. A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology 100: e02812.

129. Wang QG, et al. 2019. Analyzing tree neighborhood interactions in ecotones of montane evergreen and deciduous forests in China. Journal of Vegetation Sciencesm30: 654-663.

128. Xiao J, et al. 2019. Responses of four dominant dryland plant species to climate change in the Junggar Basin, north-west China. Ecology and Evolution 9: 13596-13607.

127. Zhang H, et al., 2019. High-resolution vegetation mapping using eXtreme Gradient Boosting based on extensive features. Remote Sensing 11: 1505.

126. 张雪皎, ..., 唐志尧*. 2019. 中国北方栎属树木多度分布及其对未来气候变化的响应. 植物生态学报  43: 774-782.

125. 唐志尧, 刘鸿雁. 2019. 华北地区植物群落分布格局及构建机制. 植物生态学报 43: 729-731.

2018

124. Tang ZY#, Xu WT#, Zhou GY#, et al. 2018. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. PNAS 115: 4033-4038.

123. Tang XL#, Zhao X#, Bai YF#, Tang ZY#, et al. 2018. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. PNAS 115: 4021-4026.

122. Bruelheide H, et al. 2018. Global trait-environment relationships of plant communities. Nature Ecology and Evolution 2: 1907-1918.

121. Chen SP, et al. 2018. Plant diversity enhances productivity and soil carbon storage. PNAS 115: 4027-4032.

120. Huang YY, et al., 2018. Impacts of biodiversity in a large-scale subtropical forest experiment. Science 362: 80-83.

119. Jiang ZH, et al. 2018. A trait-based approach reveals the importance of biotic filter on elevational herb richness pattern. Journal of Biogeography 45:2288–2298.

118. Liu XJ, et al. 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Royal Society B 285: 20181240.

117. Lu F, et al. 2018. The effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. PNAS 115: 4039-4044.

116. Schuldt A, et al. 2018. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications 9: 2989.

115. Shrestha N, et al. 2018. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Global Ecology and Biogeography 27: 913-924.

114. Tian D, et al. 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review 5: 728-739.

113. Zhang Q, et al. 2018. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen fixation type. Plant and Soil 427: 305-319.

112. Zhao H, et al. 2018. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China. Journal of Geographical Science 28: 791-801.

111. 唐志尧等. 2018. 遥感在生物多样性研究与保护中的应用. 生物多样性 26: 807-818.

110. 张则瑾,..., 唐志尧*. 2018. 中国极小种群野生植物的保护现状评估. 生物多样性 26: 572–577.

109. 刘鸿雁, 唐志尧, 朱彪. 野外生态学实习指导. 8040威尼斯出版社. 2018.

108. 谢宗强, 王杨, 唐志尧, 徐文婷. 中国常见灌木生物量模型手册. 科学出版社. 2018.

2017

107. Chi XL, ..., Tang ZY*. 2017. Seasonal characteristic and determinants of tree growth in a Chinese subtropical forest. Journal of Plant Ecology 10: 4-12.

106.  Chi XL, ..., Tang ZY*, Huang LQ*. 2017. Threatened medicinal plants in China: distributions and conservation priorities. Biological Conservation 210: 89-95.

105. Guo Q, ..., Tang ZY*. 2017. Asymemetric competition for light varies across functional groups. Journal of Plant Ecology 10: 74-80.

104. Guo YP,…, Tang ZY*. 2017. Legume shrubs are more nitrogen-homeostatic than non-legume shrubs. Frontiers in Plant Sciences 8: 1662.

103. Yan YJ, …, Tang ZY*, Yao YJ*. 2017. Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation 206: 143-150.

102.  Eigenbrod F#, Tang ZY#*, et al. 2017. Spatial covariance of ecosystem services and poverty in China. International J. Biodiversity Science, Ecosystem Services & Management 131: 422-433.

101. Cai Y, et al. 2017. Different composition and distribution patterns of mineral‐protected versus hydrolyzable lipids in shrubland soils. Journal of Geophysical Research- Biogeoscience 122: 2206-2218.

100. Eziz A, et al. 2017. Drought effect on plant biomass allocation: A meta-analysis. Ecology and Evolution 7: 11002-11010.

99. Wang SY, et al. 2017. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). PLoS ONE 11: e0175742.

98. Yan ZB, et al. 2017. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants. Annals of Botany 120: 937-942.

97. Zhu JX, et al. 2017. Carbon stocks and changes of dead organic matter in China`s forests. Nature Communications 8: 151.

96. 郭焱培, ..., 唐志尧*. 2017. 中国北方温带灌丛生态系统碳、氮、磷储量. 植物生态学报 41: 14-21.

95. 杨弦, ..., 唐志尧*. 2017.中国北方温带灌丛生物量的分布及其与环境的关系. 植物生态学报 41: 22-30.

94. 谢宗强, 唐志尧. 2017. 中国灌丛生态系统碳储量的研究. 植物生态学报 41: 1-4.

93. 张建华等. 2017. 北京东灵山地区常见灌丛生长及凋落物生产对氮添加的响应. 植物生态学报 41: 71-80.

92. 张建华等.  2017. 氮添加对北京东灵山地区灌丛土壤呼吸的影响. 植物生态学报 41: 81-94.

2016

91. Dallimer M#, Tang ZY#, et al. 2016. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecology and Evolution 6: 1942-1953.

90. Yang X, …, Tang ZY*. 2016. Variations of leaf N, P concentrations in shrubland biomes across Northern China: phylogeny, climate and soil. Biogeosciences 13: 4429.

89. Castro-Izaguirre N, et al. 2016. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest. PLoS ONE 11: e0167771.

88. Lin L,  et al. 2015. Range expansion and habitat shift trigered elevated diversification of the rice genus (Oriza, Poaceae) during the Pleistocene. BMC Evolutionary Biology 15: 182.

87. Tao SL, et al. 2016. Spatial scale and pattern dependences of aboveground biomass estimation from satellite images: a case study of the Sierra National Forest, California. Landscape Ecology 31: 1711-1723.

2015

86. Chi XL, Tang ZY*, et al. 2015. Effects of size, neighbors and site conditions on tree growth in a subtropical evergreen and deciduous broad-leaved mixed forest. Ecology and Evolution 5: 5149-5161.

85  Qiao XJ, Jabot F, Tang ZY*, et al. 2015. A latitudinal gradient in tree community assembly processes evidenced in forests of China. Global Ecology & Biogeography 24: 314-323.

84.  Liu YN, Tang ZY*, et al. 2015. Contribution of environmental filtering and dispersal limitation to species turnover of temperate deciduous broadleaved forests in China. Applied Vegetation Science 18: 34-42.

83. Zhang JH, Tang ZY*, et al. 2015. Resorption efficiency of leaf nutrients in woody plants on Mt. Dongling of Beijing, Northern China. Journal of Plant Ecology 8: 530-538.

82. Zhang JH, …, Tang ZY*. 2015. Effects of nitrogen addition on nitrogen resorption in temperate shrublands in northern China. PLoS ONE 10: e0130434.

81.  Zhang ZJ, …, Tang ZY*. 2015. Distribution and conservation of threatened plants in China. Biological Conservation 192: 454-460.

80.  Zhang ZJ, …, Tang ZY*. 2015. Distribution and conservation of orchid species richness in China. Biological Conservation 181: 64-72.

79. Qiao XJ, et al. 2015. Beta diversity determinants in Badagongshan, a subtropical forest in central China. Scientific Reports 5: 17043.

78. Tao SL, et al. 2015. Rapid loss of lakes on the Mongolian Plateau. PNAS 112: 2281-2286.

77. Wu X, et al. 2015. The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography 38: 602-613.

2014

76.  Chi XL, Tang ZY*, Fang JY. 2014. Patterns of phylogenetic beta diversity in China’s grasslands in relation to geographic and environmental distances. Basic and Applied Ecology 15: 415-426.

75. Yang X, Tang ZY*, et al. 2014. Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China. Scientific Reports 4: 5448.

2013

74.  Yan YJ, Yang X, Tang ZY*. 2013. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecology and Evolution 3: 4584-4595.

73. Barrufol M, et al. 2013. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8: e 81246.

72. Chen YH, et al. 2013. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36: 178-184.

71. Li LP, et al. 2013. Species richness patterns and water-energy dynamics in the drylands of Northwest China. PLoS ONE 8: e66450.

70. 赵广华, ..., 唐志尧*. 2013. 中国国家级陆地自然保护区分布及其与人类活动和自然环境的关系. 生物多样性 21: 658-665.

69.  方精云等. 2013. 生态学家看生态文明. 中国科学院院刊28: 182-188.

2012

68.  Qiao XJ, Tang ZY*, et al. 2012. Effects of community structure on the species -area relationship in China’s forests. Ecography 35: 1117-1123.

67.  Wang SP, Tang ZY*, et al. 2012. Influences of species pool and local processes on the taxonomic structure of woody plant communities in China’s mountains. Ecography 35: 1168-1175.

66.  Tang ZY, et al. 2012. Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China. Ecography 35: 1083-1091.

65.  Tang ZY, et al. 2012. Geography, environment, and spatial turnover of species in China’s grasslands. Ecography 35: 1103-1109.

64. Fang JY, et al..2012. Forest community survey and the structural characteristics of forests in China. Ecography 35: 1059-1071.

63. Fang JY, et al. 2012. Multi-scale patterns of forest structure and species composition in relation to climate in northeast China. Ecography 35:1072-1082.

62. Fang JY, et al. 2012. Large-scale patterns of tree species richness and the metabolic theory of ecology. Global Ecology and Biogeography 21:508-512.

61. Qiao XJ, et al. 2012. What causes geographical variation in the species-area relationships? A test from forests in China. Ecography 35: 1110-1116.

60. Shen ZH, et al. 2012. Geographical patterns of community-based tree species richness in Chinese mountain forests: the effects of contemporary climate and regional history. Ecography 35: 1134-1146.

59. Wang XP, et al. 2012. Relative influence of regional species richness vs. local climate on local species richness in China’s forests. Ecography 35: 1176-1184.

58. Wang ZH, et al. 2012. Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography 35: 1124-1133.

57. Wang ZH, et al. 2012. Geographical patterns in the beta diversity of China’s woody plants: the influence of space, environment and range size. Ecography 35: 1192-1202.

2011

56. Dallimer M#, Tang ZY#, et al. 2011. Temporal changes in greenspace in a highly urbanized region. Biology Letters 7:763-766.

55.  Tang ZY*, et al. 2011. Effectiveness of protected areas in maintaining plant production. PLoS ONE 6: e19116.

54. Shi L, et al. 2011. The changes in China’s forests: an analysis using the forest identity. PLoS ONE 6: e20778.

53. Wang ZH, et al. 2011. Patterns, determinants and models of woody plant diversity in China. Proc. Royal Society B-Biol. Sci. 278: 2122-132.

52. 池秀莲, 唐志尧*. 2011. 面积、温度以及分布区限制对物种丰富度海拔格局的影响:以秦岭太白山为例. 植物生态学报 35: 362-370.

51. 李利平, ..., 唐志尧*. 2011. 新疆野生维管束植物物种丰富度分布格局的水热解释. 干旱区研究 28: 25-30.

50. 李利平, 尹林克, 唐志尧*. 2011. 新疆野生动植物物种丰富度的分布格局. 干旱区研究 28: 1-9.

49. 李利平等. 2011. 新疆山地针叶林植物物种组成与丰富度研究.干旱区研究 28:41-46.

48. 李利平等, 2011. 方精云新疆伊犁地区野果林的群落特征及保护. 干旱区研究 28: 60-66.

47. 李利平等. 2011. 新疆山地针叶林的群落结构及其影响因素. 干旱区研究 28: 31-39.

46. 乔秀娟等. 2011. 天山南北坡植物种-面积关系.干旱区研究 28: 54-59.

2010

45. Yang YH,  et al. 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles 24: GB4022.

44. 刘怿宁, 乔秀娟, 唐志尧. 2010. 寻求生物多样性分布格局的形成机制. 自然杂志 32: 260-266.

43. 方精云、王志恒、唐志尧. 中国木本植物分布图集. 北京: 高等教育出版社, 2010 【=Fang JY, Wang ZH, Tang ZY. Atlas of Woody Plants in China: Distribution and Climate. Higher Education Press -Springer. 2011.】(获中国出版政府奖-图书奖)

2009

42. Fang JY, et al. 2009. Scenario analysis on the global carbon emission reduction goal proposed in the declaration of the G8 Summit. Science in China D 52: 1694-1702. (方精云等. 2009. “八国集团”2009意大利峰会减排目标下的全球碳排放情景分析. 中国科学D辑 39: 1339-1346.)

41. Wang XP, et al. 2009. Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography 32: 133-142.

40. Wang ZH, et al. 2009. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America. PNAS 106: 13388-13392.

39. 唐志尧等. 2009. 生物群落的种—面积关系. 生物多样性 17: 549-559.

38. 唐志尧等. 2009.生物多样性分布格局的地史成因假说. 生物多样性 17: 635- 643.

37. 陈雅涵等. 2009. 中国自然保护区分布现状及合理布局的探讨. 生物多样性 17: 664-674.

36. 王志恒等. 2009. 物种多样性地理格局的能量假说. 生物多样性 17: 613-624.

35. 方精云等. 2009. 局域和区域过程共同控制着群落的物种多样性:种库假说. 生物多样性 17: 605-612.

34. 林鑫等. 2009. 中国陆栖哺乳动物物种丰富度的地理格局及其与环境因子的关系. 生物多样性 17: 652-663.

33. 王襄平等. 2009. 中域效应假说:模型、证据和局限性. 生物多样性 17: 568-578

32. 王志恒等. 2009. 生态学代谢理论: 基于个体新陈代谢过程解释物种多样性的地理格局. 生物多样性 17: 625-634.

31. 方精云等. 2009.植物群落清查的主要内容、方法和技术规范. 生物多样性 17: 533-548.

30.  方精云等. 2009. 关于2009哥本哈根气候谈判的若干建议.中国科学院报国务院建议书.

2007

29. Walter GR, et al. 2007. Palms tracking climate change. Global Ecology and Biogeography 16: 801-809.

28. Wang ZH, et al. 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, southeast Tibet, China. Diversity and Distributions 13: 845-854.

27. Wu XP, et al. 2007. Land cover dynamics of different topographic conditions in Beijing, China. Frontiers in Biology in China 2: 463-473. (=吴晓莆等. 2006. 北京地区不同地形条件下的土地覆盖动态. 植物生态学报 30:239-251)

2006

26.  Tang ZY, Wang ZH, Zheng CY, Fang JY. 2006. Biodiversity in China’s mountains. Frontiers in Ecology and the Environment 4: 347-352.

25. Tang ZY*, Fang JY. 2006. Temperature variation along the northern and southern slopes of Mt. Taibai, China. Agricultural and Forest Meteorology 139: 200-207.

24. Wang XP, et al. 2006. Climatic control of primary forest structure and DBH-height allometry in NE China. Forest Ecology and Management 234: 264-274.

23. Zhao SQ, et al. 2006. Ecological consequences of rapid urban expansion: Shanghai, China. Frontiers in Ecology and the Environment 4: 341-346.

22. Zhao SQ, et al. 2006. Patterns of fish species richness in China's lakes. Global Ecology and Biogeography 15: 386-394.

21. Zhao SQ, et al. 2006. The relationships between terrestrial vertebrate species richness in China's nature reserves and environmental variables. Canadian Journal of Zoology 84: 1368-1374.

20. Zhao SQ, et al. 2006. Relationships between species richness of vascular plants and terrestrial vertebrates in China: analyses based on data of nature reserves. Diversity and Distributions 12:189-194.

19. 方精云, 赵淑清, 唐志尧, 长江中游湿地生物多样性保护的生态学基础. 高等教育出版社. 2006.

2005

18. Zhao SQ, et al. 2005. The 7-Decade Degradation of a Large Freshwater Lake in Central Yangtze River, China. Environmental Science and Technology 39: 431-436.

17.  戴君虎等. 2005. 五台山高山带植被对气候变化的响应. 第四纪研究 25: 216-223.

2004

16.  唐志尧等. 2004. 秦岭太白山木本植物多样性的梯度格局及环境解释. 生物多样性 12: 115-122.

15.  唐志尧, 方精云. 2004. 植物物种多样性的垂直分布格局. 生物多样性 12: 20-28.

14.  唐志尧, 柯金虎. 2004. 秦岭牛背梁植物多样性垂直分布格局. 生物多样性 12: 108-114.

13.  方精云等. 2004. “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性 12: 5-10.

2003

12. Zhao SQ et al. 2003. Lake restoration from impoldering: impact of landcoversion on riparian landscape in Honghu Lake area, Central Yangtze. Agriculture, Ecosystems and Environment 95: 111-118.

11.  戴君虎等. 2003.太白山树木年轮宽度资料对过去气候要素的重建. 第四纪研究 23: 428-435.

2002

10. Liu HY, et al. 2002. Larch timberline and its development in North China. Mountain Research and Development 22: 359-367.

9.  刘鸿雁等, 2002. 中国东部暖温带高山林线乔木的光合作用及其与环境因子的关系. 山地学报 20: 32-36.

2001

8. Fang JY, et al. 2001. Interannual variability in net primary production and precipitation. Science 293: 1723.

7.  方精云等. 2001. 生物生产力的"4P"概念、估算及其相互关系. 植物生态学报 25: 414-419.

6.  戴君虎等. 2001. 太白山高山带环境特征. 山地学报 19: 299-305

5.  赵淑清等. 2001. 洪湖湖区土地利用/ 土地覆盖时空格局研究. 应用生态学报 12: 721-725.

2000

4. Tang ZY et al. Landscape structures of Central Yangtze region, China. In "Proceedings of International Symposium on Remote Sensing 2000". Korea Society of Remote Sensing Publications, Seoul. pp 481-490.

1999

3. Cui HT, et al. 1999. Stability of alpine timberline ecotone on Taibai Mountain, China. Journal of Environmental Sciences 11: 207-210.

2.  胡金明, 唐志尧. 1999. 中国沙尘暴时空特征及人类活动对其发展趋势的影响. 自然灾害学报 8: 49-56.

1.  唐志尧等. 1999. 太白山高山林线植被的数量分析. 山地学报 17: 294-299.